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Lecture 4

* Expectations of q-TASEP observables solve integrable many body
systems which can be solved via variant of Bethe ansatz

* Limit to directed polymers shows this is rigorous replica method

* Also applies to discrete q-TASEPs, q-PushASEP, and ASEP
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q-TASEP:

Restrict to N particle state space
=N A
X = % X = (XMX,,,,‘)XQ € %002 KZ[N p oh X, > X, ’Xp?'"?’q\:g

Generator acts on \CiXN"*R as = (X, Xpos Xt %)
A /l‘ 6, ey L') --~ "N

(\\(]'TASEPQMSZ) _ ifh(\ ) 7X""xf'>(@(>’<‘:) e

Natural initial condition is step where X;(0) = - N
(When g=0, we recover the usual TASEP)
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q-Boson particle process: :r\f&@ o (1 - 06/>
® e @
® . ®, 0,0, l
N - - L 1 0
l

N _ €0.1,...N%
N+1 site state space Y - gY = (oY) € o E

. \/N
aeV\eVatOV acts on h f -_)'P\ as :[yo)__‘)\/{J])y‘.-l)___,y,u)

170 ) = 3 -5 (h(7*) -hip)

[Sasamoto-Wadati 'a8] stochastic representation of q-Bosons
[Balazs -Komjathy-Seppalainen '02] stationary 1/3 exponent
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Duality: Suppose X(t)eX and V(1) Y independent Markov
processes and H: XN —R. Then X&) and YO are dual

with respect to H if for all x, y, and t

X[ H (ym,y)] = E\/[H (X/\/fﬂ)] ,

—

* Duality leads to hidden evolution equations for expectations
of observables corvesponding to the duality function.



Theorem [Borodin-C-Sasamoto '12]: g-TASEP X e X"
and q-Bosons >7(+) ¢ Y" are dual with respect to

- A O(;‘*D ¢
HEy) = 114

(convention that if yo >() ) H = 0)

Proof: Suffices to show that ,
- TAse N ( A
LfbrA =) H()()\/) - @TZQPH )y)

AY

~ “ ey N Y Ve XXt \ B o6y
> al-g G = 2 el

t=s ! J:O




Purpose of duality (for us):
IF ->_/> = (O,O)'n, ) K) tl/\eV\

n(t:7)= CHsoy) = £ Cék(ma>+M)]

Duality implies that for X fixed, h@:y) solves the

True evolution equation:
\ N §-TAERY o
I ht:y) = L h-y)
h(o:7) = HRXY) [: Mﬂ




True evolution equation splits according to number of particles

K = k
\/\/ZO — < n - (n|).-., nk) GZZO : nl an?. Tt anz O\g

Encode 7€\ by an ordered list of particle locations

Vs 2T 0 e Wk
y(h)< 4 N
Example: N= Q , k=H

-

y:CO,S)O < > ﬁ:(b’) ')&) |:(
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We can encode true evolution equation in the 7N coordinates

by writing G(t: N = h{t;§m) | 3o(ﬁ)‘: h. (Y0
e k=1: single particle, so N=(n), then

/d %(Jc ) = 0a(] - 7) V%(JE n)

4 (d(t 0 = O

[ %(om): %o(r\)

[(\7 D= Fln-1) - f(n) ]




For step initial data X;+1=0 so H(XY) =1 and so too G =1

Claim: ESJ@P[ CDX“QM]: %fm) = § ?2&;@ Q%i

" Dt
where (d L(tin) = ﬂ am (CJ ‘

N

Proof: Check free equation, zero boundary condition, and

nitial data.




e k=2: two particles, so N =( N 2n,)
O lf h| > hl a&s as \/ on N; Coodinge

2
%%(tm) = ;O\r\ (1- Cb)v 8& 7)

olf Nn.=0n, |
AwY) = L ‘A
‘—t-%(tﬂ\) O\r\&(“cb ) vg 8(t'n)
Not constant coefficient, so unclear how to solve...

e k>2: there are different equations for each type of

clustering (i.e., many body interactions)



Proposition: (Free evolution egn with k-1 boundary conditions):
f W (Rzoy Zz:: 2 FR solves

-ForaHF\eZ;  t:0

K
‘;\G( e volution ecBn dd—t \A(‘L ?\) :Z &f\; (‘-—%) Vi ’\/{H:Jr\>

e For all N €75 such that N;=nNe.,
Romiary Cnbitions (Vi ~ gV ) WER) = O

e For all N eZs such that he=0 , WU(t:R) =0
e For all N e\wso, W(OSR) = ao (R)

Then, restricted to 0 € \W., 8&; ~) = ult:n) .




- Theorem: For step initial condition (i.e., Cd" R)=1) we have

K kk-22 o K
W(tn) = 24 00 Cats (4:0) %3
(&1?1' LBK J M 'ngk 2@\"529 U (82\] J> ZJ

Proof: Only new aspect is boundary condition. Applied to
integrand brings out factor of Zi =gz . Contour symmetry

and integrand asymmetry shows integral is zero.
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mplies joint moment formulas. For example, if all a, =

(-
[:s’rep[ |<(X/\(’c3+n) J 3 Dk [ﬂk K l)/;( § ﬁ 2. 23 (cg l}f% 9%
- Cﬁ = —

oA<gk%"‘ﬁ J‘\ (' ? 2J

Success in using moments to asymptotically study one-point
distribution, though multi-point distributions remain open



True evolution equation also equivalent to a certain

q-deformed discrete delta Bose gas
d 0/ ) — .
with Hamiltonian

(-|~(“6MZ\7 ¢ (1- “(% — v |

subject to Bosonic symmetry and zero boundary condition

Integrability (equiv. to free eqn with k-1 B.C.s) not obvious
for this system (Note: not all delta Bose gases are integrable)
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(Parallel) Geometric discrete time q-TASEP [Borodin-C '13]:

(‘P(jww\p :\P = Pm)u (\J>

< —@—— ‘@Q —— > Cﬁ‘é(O,l)} (0,1
( - 0
p (\P = X (O< Cb) ii(i cp /ko‘ o ((4 )= TE(ML;)J

At g=0 -> parallel geometric TASEP with blocking
[Warren-Windridge '04]



(Sequential) Bernoulli discrete time q-TASEP [Borodin-C '13]:

Prb 2}
1) < @ —@— ‘/}1 | ’{,2 = @é(O,l)}/BG(O,eo)
,Nprob (| - 39“()) \%3
< \ ‘ \ . | . ' : q
2) _Prob 15
< “ ‘ \ ' ‘ — -. ‘ : S
3) .

At g=0 -> sequential Bernoulli TASEP [Borodin-Ferrari 'O8]
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q-TASEP joint moments satisty various many body systems

Theorew [Borodin-C '13]: For N, 2n,2-3n, > 0

| v k-0 ™

K Xy (Den, ) ) 4 §§ 2a % e £§2) Jz
RN E 01 == 1l a0 iy =
_" “E.Cb _1‘ (&WD <Ak 7@ | ( ilJ)J “D(ZJ) %\/

S

\ i

tz
€, Bisonian ConTmusus q-THSEP

‘F(%B = ((0(2 (b) \ bometric discrele i TASEP
(1 \-)1%) Bermoulli ducrete TTASED
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q9-TASEP (| %Xn““” = (|- )V %X“m*”d{ ' %X““’”‘ \ I\gn(b

satis Fies: /\/\arﬁﬁgale

Xo®+ 0

%Xnko)*nz 1 (sﬁp)/ % =0 (x-o)

Theorem [Borodin-C '11]: For g-TASEP with step init. cond.

scale C6: 6-8, t= e CXab)= E‘J’C’-(n«OE‘(oﬁ&" ‘EC‘ES(TJH)

and. call 2&(“C)n)= @XP {L’% t Fg('?:,n)g . Then as £ O,
Z0) = Z2(.,.) where 2 solves the semi-discrete SHE:

d2(T,n) =V 2,0 dT +2cc,ndB(T)
< ind, BMmy
200,n)=1hee , 2(T,00=0




Partition function for a semi-discrete directed random polymer

N By (0,5,)+ B, (5152) + + By (Sy-4,t)
Z£ = @ dsf--.ds,‘,_i

0< S, <. <8, <&

B“ . 3 ,, are independent Brownian motions

A
Py 0,p)=B,(p)-B, () = !ékoodx

[O'Connell-Yor 2001 ]
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o, N s [ Bies) e +By (s )
MCJC,/\/>;=Q//ZZ£:Q/f@,1 " 1<

O<S4<“‘<SN~I<£
satisfies

QUEN)
~E

with W (o, N) ‘Sm-

= (W) - ulE M) + By (&) w4

This is a discrete analog of the stochastic heat equation
_ 1 )

where W is the space -time white noise.

The path integral is the Feynman-Kac solution
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The semi-discrete Brownian directed polymer is exactly solvable.

Theorem (Borodin-Corwin, 2011) The Laplace transform of the polymer partition
function Z, can be written as a Fredholm determinant

<€-MZ"N> = det (04 K)o ()

where 2

(.001'— S

VEs+ -
V\ Q\l \I> & (?((\;\121)) . Se-:v—v Sj‘sﬁs

-(eo +d
2

N go N
Corollary (B-C, B-C-Ferrari, 2011-12) Set [:t = g Zf. Forany € >0

lin P{ BN ) or ()
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This leads to a rigorous derivation of E[ég Z(tm]: Clﬁ(ﬂ*‘%g)
and proof that logarithm of semi-discrete SHE has GUE
Tracy-widom scaling limit under T3 scaling (Ferrari's talk)

Under weak noise scaling [Alberts-Khanin-Quastel '12.] the
semi-discrete SHE converges weakly to the continuum SHE
[Moreno Flores-Remenik-Quastel '137:

gt %(t/x = ‘iaj z(t/x> ¥ 2({/X>§(‘(DX> ) %(O) )() = SXZO

Spae ‘/’}‘m( wh HT nois—e)

Thus a second proof of SHE Laplace transform Fredholm det.

[Sasamoto Spohn ‘10, Amir-C-Quastel '10, Calabrese-Le Doussal -Rosso '10, Dotsenko '10]
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Feynman-Kac representation leads to semi-discrete polymer
[O'Connell-Yor 'O1] and continuum random polymer.

Replica method [Molchanov ‘g6, Kardar '8 7] shows that joint
moments E[ﬁafmﬂ, (E[Wi 2(t,%)| satisfy delta Bose gases

K B K
H=>V +> Loy H :i.‘iz O L0

NEl ls'wJ'sk v J l:i,<J‘s|<

Both can we written as free evolution eqn. with k-1 B.C.'s
and solved by limits of the q-TASEP nested contour formulas.

ck?

2
However, these moments grow like =0 , €77 and hence

do not characterize the distribution of Z (replica trick).
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General coupling const. version (¢c<O repulsive, ¢>O attractive)

a UW(t;X) = z QXJ U(t; X)

(ax axm‘ C)\A(Jt X)‘X/‘ O U(0:3) =65 -0
Xin

is solved (in X <X <-<¥) by the nested contour imtegm( formula

~ 1 2a-2% TT A% 2 +
U =g | TT a5 1T el

l $A<B£K Ea- 2 =C

where Z; is integrated over o¢+UR , with o>t >eg4al> -
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Many body systems approach reveals parallel formulas.
Is there a higher structure which accounts for this?

\

Macdonald processes

W > any bod@@ j
bethe \

ASEP q-TASEP
amsatz \

MV\WAW\ ﬁ /
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Asymmetric simple exclusion (particle) process

OM\Q fpo?i ;ﬁf' I~ %

<t—+—+—@ & ©

~a, a, T T & 0, as
Y, () X,(4) X3t Xy(h

V

Particles attempt continuous time random walks, jumping
left over bond i+ at rate 0i @ and right at rate &P. If
the destination is occupied, the jump (s suppressed.

State space for k particles: Wk = § X, <Xy < <>(l<§ S Zk,

Generator (_R’P”er(;) for X €W*.

eg k=1 (P00 = axp [P -fo) +ap-GlReed-f0)]



Asymmetric simple exclusion (occupation) process

7 () = %7X(Jf>?xez <%0, 3 / 7&0 = % (I> parkde 6 x e T

otherwse

V=7 /'Oquaq‘»g 0y P Lo (%,7,.0) = (1,0)
l—‘77/ > Y+l ot rute &y% IF /’7}, '7yﬂ) (0 '>

(Lw@ (% L, Ay (P"7y( - ?/’r')*i[ (I 77)7%!)[@( ) - f( )1

/€L

Dynamics: for each y

Assume that ¢ p so 1p = <L (py=1) and C< Gxe 0T
Define: Nx = N, () = }/Z;( %/




Theorew [Borodin-C-Sasamoto '12]: For any k>0, the ASEP
particle process X() (with p<->q switched) and the ASEP
occupation process (1) are dual with respect to

H(y,x )= TT N'm%
(e, B (Hbw3)=

:X(H(y/m))) For all %€ C013% Tew* ,%zo)

lm

If all bond jump rates parameters (I; =] then the processes
are also dual with respect to

7))() WTN ¥



Remarks on the duality.
e When p=q, the H-duality describes correlation functions
and s much more general.
e When all 0;=1, H-duality shown previously [Schutz 'a7]
via related quantum spin chain Mﬁ(sx&) - symmetry.
e When k=1, the G-duality is Gartner's microscopic ASEP
Hopf-Cole transform.

Proof: Directly from studying the effect of applying the
Markov generators to the duality function.



From duality to determinants:

N\ IS N ()
1. Duality lead to system of ODEs for MJCJX>'~E [T[T " 7,((#]

2. For Q;=1 / step initial data, solve ODEs via a "nested

contour integral ansatz" (relies on integrability)

Nth( t
3. Combine integral solutions to yield formula for H 2 7 )]

4. Deform nested -contours to coincide and track residues

5. Form generating function (T -Laplace transform) and
identify Fredhold determinant (Mellin Barnes/Cauchy type).

B 1
{: [(Sz”x‘%)%] =det(1+ky)
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Let's focus on steps 1 and 2.
Duality provides a non-trivial coupled system of ODEs:

e E'[Li,9] -2 50 < it 2
%H{};) :(L)Pm) ht %) h(0, %)= HO%)

-

But how to solve? For k>1 the generator depends on X !

First idea (from Bethe, cf. Tracy-Widom ASEP papers):
Try to solve "free" system of ODEs on all of 75 with
boundary conditions on W «



| Pro:aositiow Iif U ka[ng —”P solves
K
U, %) = > (L uct. )

\Q(QQ

o 1 OHI

3@& For‘ all ¥€ AR Xpe =¥, t1 por‘ some L,
P\A ) L+I >+$\A’({ X+>— \A(t X>

&9‘0“ ?) For all 7 G\N/ U©,x) = H(% Y)

Then Forall £20, xeW®, h(t,%) = uwt, %

2
C’K\ R,C, IMP,LQJ
Erws Gancy) |
X

(Note: Since system of ODEs is infinite, we must also impose an exponential growth condition; and we

can weaken initial data to weakly converge, as is useful in our contour integral formulas we find)
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Assume from now on step initial condition (%‘:ﬂxﬁ) and ;=1

How to solve this system of ODESs?
X - |

Ry ~ 2p- 32 |+ 2 __’_,
L b= 2 0

solves the "free" evolution egn. for all 2e C/5-13.

Ux(tﬂ(): EMTZ‘ e 3] ;Zmy \f\ (tx)d

you sl
A

Proof: Check by residues that WU(0,X) = T 1es,




For K>1 we use an idea inspired from the theory of
Macdonald processes -> "nested contour integral ansatz"

Theorew [Borodin-C-Sasamoto '12]: Fé)r all k=1

- '<U<-l)/2 2/‘\ - ZB
UEH =2 [ [ TT 2, [Th,tx)de
(l\TQK ISDBS I—<ZA e Ls) 4
o 1S 2 to aveid poles
W here Con‘('()wl‘ O\C lv"+06m/‘ | 7‘% = Oz 2 T2g.

Restricting to X eW ™ yields: | Assume Xz=Xi+1 and Check bowndary ivd
N — k ((b) T(\y to QPP\/ + 45 M”(ﬁmd = bwmas O
1\_5 ‘-QP W .oZ, NX;‘\ 7 , (+>] {:O\C{"OF C%l - ‘Z{Q , Cav\(ﬁig W'rl'h /L]; #env\,
L b= W\Acx{” rmaug S “\ (—.3’_%13 6(;50 6{7—52 -0
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Nx‘ ()

shyp shop o
Suitable combinations of ‘Ewm 7"0')] yields ‘E [NChN 7“’3]

Theorem [Borodin-C-Sasamoto '12]: For step initial condition
ASEP with =1 and p<q (hence ’C’=‘7% <1, ¥=¢-p>0 )

CleqL(IJr |><s z/ﬂ\ ”éif'lﬁ;;

[ 1 / Gy type
ELOT™TL N Lo det(T-SR)y, )50

8:T
N —l.d ) ( v N €€( Wt
K’S(w’ ‘am S (is) ﬁ_ww) W' / K(w w>\ Tw- w

gi= € tﬁ“’(tw)x ¢ (w) = 7(l+w)(’c+w)




Corollary [Tracy-Widom '09, Borodin-C-Sasamoto '12]:
| step t _ Y 4
im [P [ /) =74 > p) <[, (3%r)
+— o0 ‘t >

Recovering the celebrate Tracy-Widom / Johansson result.

Remarks:

» Mellin Barnes Fredhold det. new and easy for asymptotics

o Inversion of Cauchy Fredholm det. equivalent to initial det.
in [Tracy-Widom '049]

» Completely parallel to g-TASEP formulas
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Coordinate approach of [Tracy-Widom '0g -'0q]:

o Study k particle ASEP and use coordinate Bethe ansatz (cf.
[Schutz 'a7] for k=2) to compute Green's functions.

e Manipulate formulas to extra one-point marginal.

« Approach step initial condition by taking k to infinity and
observe an integral transform of Cauchy type Fredholm det.

e Functional analysis to rework for asymptotic analysis.

Using k-particle Green's functions can write solution of duality
ODEs as k! k-fold contour integrals [lmamura-Sasamoto '11].

Equivalence to nested formula is non-trivial.
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